Hydrothermal fabrication of hierarchically macroporous Zn2SnO4 for highly efficient dye-sensitized solar cells.

نویسندگان

  • Yu-Fen Wang
  • Ke-Nan Li
  • Yang-Fan Xu
  • Hua-Shang Rao
  • Cheng-Yong Su
  • Dai-Bin Kuang
چکیده

Hierarchical macroporous Zn(2)SnO(4) consisting of nanoparticles has been synthesized for the first time through an in situ hydrothermal and a following annealing process in the presence of a polystyrene (PS) template. Zn(2)SnO(4) macropore sizes are tuned in the range of 180-650 nm by selecting the appropriate size of PS spheres, and the building unit size of the Zn(2)SnO(4)macropore is 4.2 nm regardless of the PS sizes. The photovoltaic performances of the dye-sensitized solar cell based on hierarchical macroporous Zn(2)SnO(4) with 200, 400, 600 and 750 nm PS spheres are 5.01, 4.76, 4.39 and 3.92%, respectively. The smaller pore size of Zn(2)SnO(4) exhibits higher photovoltaic performance, which is ascribed to the higher dye loading, faster electron transport rate and slower electron recombination rate. These are confirmed by UV-vis absorption spectroscopy, intensity-modulated photocurrent spectroscopy, intensity-modulated photovoltage spectroscopy and electrochemical impedance spectroscopy. The double layered photoelectrode based on a Zn(2)SnO(4) nanoparticles dye adsorption layer (4.2 nm in particle size, 15 μm in film thickness) and a macroporous light scattering layer (180 nm in macropore size, 4.0 μm in thickness) shows a remarkable enhancement in power conversion efficiency (6.10%) compared to that of Zn(2)SnO(4) nanoparticles photoelectrode (5.36%) because of its superior light scattering ability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of dye sensitized solar cells with a double layer photoanode

Dye sensitized solar cell was fabricated from a double layer photoanode. First, TiO2 nanoparticles  were synthesized by hydrothermal method. These TiO2 NPs were deposited on FTO glasses by electrophoretic deposition  method in applied voltage of 5 V and EPD time of 2.5-10 min. Then TiO2 hollow spheres (HSs) were synthesized by sacrificed template method with Carbon Spheres as template and TTIP ...

متن کامل

Hierarchically Structured Zn2SnO4 Nanobeads for High-Efficiency Dye-Sensitized Solar Cells

We developed a unique strategy for fabricating hierarchically structured (nanoparticles-in-beads) Zn2SnO4 beads (ZTO-Bs), which were then used to produce ternary metal oxide-based dye-sensitized solar cells (DSSCs). DSSCs were fabricated using the ZTO-Bs as the photoelectrodes and highly absorbable organic dyes as the sensitizers. The DSSCs based on the ZTO-Bs and the organic dyes (SJ-E1 and SJ...

متن کامل

Highly porous Zinc Stannate (Zn2SnO4) nanofibers scaffold photoelectrodes for efficient methyl ammonium halide perovskite solar cells

Development of ternary metal oxide (TMO) based electron transporting layer (ETL) for perovskite solar cell open a new approaches toward efficient a unique strategy for solid state dye-sensitized solar cells (ssDSSCs). In the present investigation, highly porous zinc tin oxide (Zn2SnO4) scaffold nanofibers has been synthesized by electrospinning technique and successfully used for methyl ammoniu...

متن کامل

Investigation the effect of substrate photo-electrode based on screen method on performance of dye-sensitized solar cells

In this paper we studied preparation of working films of dye-sensitized solar cells using screen printed method. The organic dye based on phenoltiazine with cyanoacrylic acid as the electron donor group utilized as photosensitizer. Fluorine-doped thin oxide FTO coated glass is transparent electrically conductive and ideal for use in dye-sensitized solar cells. FTO glass was coated by screen pri...

متن کامل

Hierarchically structured nanotubes for highly efficient dye-sensitized solar cells.

Hierarchical TiO2 nanotube arrays grown on Ti foil are yielded by subjecting electrochemically anodized, vertically oriented TiO2 nanotube arrays to hydrothermal processing. The resulting DSSCs exhibit a significantly enhanced power conversion efficiency of 7.24%, which is a direct consequence of the synergy of higher dye loading, superior light-scattering ability, and fast electron transport.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 5 13  شماره 

صفحات  -

تاریخ انتشار 2013